#### Outline

- Science goal of ECAL
  - Search for signatures of sources and spectral features
  - Extend measurements of the electron spectrum to high energies
  - ATIC has measured electron spectrum and reports a feature in the electron spectrum
  - Conduct long duration balloon flights for 50 days total exposure
  - Improve electron/proton discrimination
  - Background electrons
- Instrument concept based on ATIC heritage
  - Thin imaging ionization calorimeter with particle identification detector optimized for hadron measurements
  - Replaced target section with a fine tracking detetctor
  - Altered the SiMat design to better separate Z=0, 1 & 2 particles
  - Using same data system and mechanical structure (3 LDB flights completed)
- Electron Identification techniques
  - Charge identification
  - Shower shape
  - Starting point/first interaction depth
  - Ratio of shower core signal to full shower signal
  - Depth of 95% of energy deposition in calorimeter
  - Number of Neutrons detected
- Simulations of Secondary Neutrons
  - Number of neutrons produced in hadronic versus electro-magnetic interactions
  - Number of neutrons detected at different points of the detector volume
- Conceptual Design
- Detection efficiency
- PMT operations
- Conclusions

## Electron Calorimeter Experiment

COSPAR, Montreal Canada

July 2008

James H. Adams<sup>1</sup> for the ECAL Collaboration

<sup>1</sup>MSFC/NASA Huntsville AL. 35812

#### Science Motivation

- Measure electron spectrum and search for signatures of sources and spectral features
- ATIC measured the electron spectrum and reports a feature in the electron spectrum
- ECAL will be implemented on long duration balloon flights for a total exposure of 50 days
- Requires proton rejection capability to achieve the measurement
- Background electrons

#### Science Goal



Existing data and model calculations for candidate nearby sources





Expected reach and flux sensitivity for ECAL on LDBs



#### **ECAL Instrument**

- Based on ATIC heritage: thin imaging ionization calorimeter with particle identification detector optimized for hadron measurements
- Replaced target section with a fine tracking detector
- Modify the SiMat design to better separate
   Z=0, 1 & 2 particles
- Uses same data system and mechanical structure (3 LDB flights completed)

# Electron Calorimeter Experiment for LDB



### Electron Identification techniques

- Charge identification
- Starting point/first interaction depth
- Shower shape
- Ratio of core signal strength to full shower
- Depth of 95% of energy deposition in calorimeter
- Number of neutrons detected

### Point back accuracy to CID









# Cascade Imaging

Electron cascades are consistently smooth and well defined





Proton cascades are irregular and vary greatly from event-to-event

# Cascade Imaging (continued)

Electron cascades are confined to a small lateral width with few signal spikes on the wings





The principal part of proton cascades develop on top of widely scattered singly charged particles.

### Cascade starting point

- •Fine lateral and longitudinal sampling in upper detector
- •Small nuclear interaction cross section ( $\lambda = 0.15$ )
- •Several radiation lengths to initiate electron cascade high in detector
- •MIP sensitivity with sub-millimeter position resolution



#### Neutron detector concept

- ECAL total mass 1600kgs ( $\lambda_{total}$ =1.3 MFP)
- Neutrons are detected using boron-loaded scintillators viewed by photomultiplier tubes (PMTs)
- 10 Scintillators 5×5×50 cm<sup>3</sup>, each viewed by two 2" dia.
   PMTs
- Multiple detector locations possible (secondary neutrons are present all around the detector mass)
- e/p discrimination enhanced by material selection for hadronic interactions and neutron moderation



#### **Detection Principles**

$$n + {}^{10}B \rightarrow \left\{ \begin{array}{c} {}^{4}He + {}^{7}Li & {}^{6\%} \\ {}^{4}He + {}^{7}Li + \gamma(0.48MeV) & {}^{94\%} \end{array} \right.$$

Q = 2.8 (2.3) MeV

#### **Neutron Capture**



#### Scintillation Efficiency



# Simulations of Secondary Neutrons

GEANT4 Simulation Neutrons from a 0.3 TeV Proton incident on ATIC



GEANT4 Simulation Neutrons from a 0.3 TeV Electron incident on ATIC



# Secondary neutron production by 10 TeV protons



# Comparison of secondary neutrons produced by proton and electron events









# Timing characteristic of secondary neutrons in ECAL



### Secondary neutron capture efficiency





# Spatial distribution of secondary neutron flux in ECAL (electrons)









#### Secondary neutrons due to protons









# PMT Operation: Blanking high voltage





PMT Strobe (magenta). Switch-On crosstalk on the PMT output





Trigger Pulse (yellow). PMT Strobe (magenta). PMT response to the Light Pulse (blue)

#### Data Acquisition



Counting technique. (counting og single PMT pulses)



Integrating technique (integrating of single and piled up PMT pulses)

#### PMT Counting Mode



PMT Strobe (magenta), PMT output (blue). Source – Light Pulser

#### **Integrated PMT Pulses**



PMT pulse (blue); Discr. output (green); 50ns one shot (yellow)



Trigger, PMT, monostable and Inegrator (green) outputs



Integrator output (green) 40ns/div scale



**Inegrator output (green); Integrating gate (yellow)** 

#### Laboratory Test

- Source
   AmBe + HDPE→ thermal neutrons
- Detector
   Bicron BC-454: 1"×1" dia.

   Wrapped with Tyvek
- PMT
   Hamamatsu R8900u-03



PHA of anode signal

#### Conclusions

- Boron loaded scintillators are suitable for measuring secondary neutrons produced by highenergy particles: protons & electrons
- Neutron flux can be used to discriminate hadron and electro-magnetic particles
- Combined effectiveness of all e/p discriminators techniques employedTBD
- Only moderate improvement in detection efficiency for <sup>10</sup>B concentrations >few% in thick moderators
- Bottom scintillator might serve as cascade penetration counter (TBC)